

Datasheet V_{0.4}

confidential information

preliminary specification

1 INTRODUCTION

GNS302uLP is a complete GPS receiver that is optimized for very low power consumption. Thanks to an advanced dynamic power management technology, the current is reduced to a minimum of \sim 7 mA (<25mW). Average power savings in comparison with common low power GPS modules are 60%.

Unlike other concepts that use trickle operation modes with reduced update rates of the position, GNS302uLP works at full 1-per-second position update rate.

Best power savings can be achieved in typical outdoor scenarios with wide view angles to the sky.

GNS 302uLP allows long term tracking in small applications like fitness wearables, pet tracking and camera applications.

Very low power requirements and internal voltage regulator makes it easy to run the receiver with various power supplies and allows direct connection to Lilon batteries.

For high accuracy and additional SBAS operation, the GNS302uLP can be switched to continous high activity power mode by software command.

GNS 302uLP utilizes a tiny chip antenna to realize high sensitivity with very small space requirements. If radiation pattern and best antenna performance is a main requirement, GNS also offers a patch antenna version (GNS601uLP).

Its attractive price and ready-to run configuration with integrated antenna solution reduces time-to-market to a minimum.

First Fixes after just a few seconds are achieved with the help of A-GPS using EPOTM (Extended Prediction Orbit) and the EASYTM self generated orbit prediction algorithm. EASYTM (Embedded Assist System) does not require any resources from the host and no data from the network.

AlwaysLocateTM power management feature can be activated to further lower the power requirements at lower update rates. It adaptively adjusts power consumption depending on the environment and motion conditions, in order to achive a balance between fix rate, power consumption and position accuracy.

GNS302uLP offers the industry's highest level of navigation sensitivity up to -165dBm¹. It has superior dynamic performance at high velocity and provides effective protection against interference signals using MTAIC™ (Multi-tone active interference canceller). Up to 12 independent channel interference continious wave jammers <-80dBm can be eliminated or reduced.

The embedded logger function LOCUS with a 16-hrs (8000 samples) on chip memory makes this GPS module a complete track logger for many applications.

Datasheet V0.4

confidential information

preliminary specification

In professional timing applications the outstanding high accuracy PPS (pulse per second) hardware pin is used for synchronization to GPS second. Typical accuracy is 10ns RMS.

Features

- Ultra low power technology at full tracking output rate
- 66 acquisition-/ 22 tracking channels
- Ultra high tracking/navigation sensitivity: -165dBm¹
- tuned ceramic chip antenna
- SBAS (WAAS,EGNOS,MSAS,GAGAN, QZSS) correction support in high activity mode
- A-GPS by EPO "Extended Prediction Orbit" TM enables 7/14days prediction
- 12 Multitone Active Interference Canceller (MTAIC) for GPS-in-band jammer rejection
- EASY [™]: 3 day self generated orbit prediction support
- High accuracy 1PPS output
- NMEA-0183 protocol, configurable
- High update rate (up to 10/s) in high activity mode
- Embedded logger function with 16hrs internal memory
- GPS current consumption (@3.3V):

Acquisition: 22mA typical Tracking: 7mA typical

- Low backup current consumption 7uA, typical
- SMD type LGA
- Small form factor: 15.7x10x2.0mm

¹ Note: Measured navigation sensitivity at RF input of chipset

Datasheet V0.4

confidential information

preliminary specification

2 INDEX

	TRODUCTION	1
2 INDI	DEX	
3 FUN	NCTIONAL DESCRIPTION	4
3.1	System description	4
3.2	Block diagram	
3.3		5
3.4 3.5		
3.6	·	
3.7		, 88
3.8		
3.9	GPS almanac and ephemeris data	8
3.10	0 Real time clock (RTC)	8
3.11	1 UART interface	8
3.12		G
4 TYPI	PICAL APPLICATION BLOCK DIAGRAM	9
4.1		G
5 GPS	S characteristics	10
5.1		
6 ELEC	ECTRICAL SPECIFICATION	11
6.1	Absolute Maximum Ratings	11
6.2		11
7 PIN	N CONFIGURATION	12
8 NME	1EA DATA interface	13
8.1	NMEA output sentences	13
8.2		
	YSICAL DIMENSIONS	
10 RE0	ECOMMENDED PAD LAYOUT	15
11 DES	ESIGN GUIDELINES	16
11.1		
	MEA DATA interface	18
12.1		 18
12.2	·	18
13 MA	ATERIAL INFORMATION	19
	ECOMMENDED SOLDERING REFLOW PROFILE	
15 DA	ACKAGE INFORMATION	20
		20
15.1 15.2		
	z	
	UALITY AND ENVIRONMENTAL SPECIFICATIONS	
	OCUMENT REVISION HISTORY	
19 REI	ELATED DOCUMENTS	23

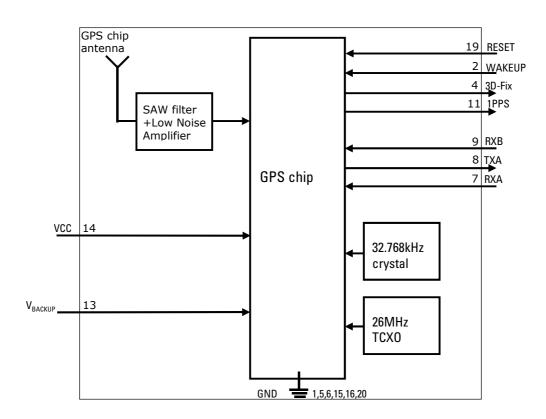
Datasheet V0.4

confidential information

preliminary specification

3 FUNCTIONAL DESCRIPTION

3.1 System description


The GNS302uLP is a high performance, ultra low power GPS receiver that includes an integrated RF frontend (SAW Filter + LNA) and a ceramic chip antenna.

Due to high input sensitivity and low noise amplifier (LNA), it can work at weak GPS signals.

GNS302uLP is a complete autonomous GPS receiver, including:

- Full GPS processing, without any host processing requirements
- Standard NMEA message output
- A powerful NMEA command and control interface
- All clock sources integrated
- RF frontend integrates a two stage low noise amplifier (LNA) a SAW filter and a high performance chip antenna
- Interface for UART, PPS output pin, Fix Status Indicator pin

3.2 Block diagram

Datasheet V0.4

confidential information

preliminary specification

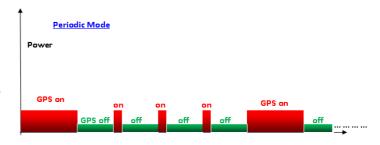
3.3 Power Management Features

GNS302uLP uses an advanced hardware / firmware architecture to minimize power consumption at full navigation update rate of 1position per second.

Best savings are possible with 6 SVs in track and good fieldstrength.

• *uLP feature* is a dynamic power management that allows to reduce the power consumption to ~40% in average. Thanks to advanced hardware and firmware architecture and unlike other power management features, uLP feature will calculate and output position data every second. uLP feature has been developed for fitness- and other wearable applications. The average accuracy will be slightly reduced (4m instead of 3m). For static or slow moving scenarios, the savings can be better than 70%. uLP feature is activated by default and can be deactivated through \$PMTK262,0 command.

Besides of the uLP power mode, the well known power savings modes with reduced output rate and performance are available when uLP is disabled.


Power management schemes implemented for any GPS system requires an optimally tuned performance for both accuracy of the position fixes and the average power consumed for best user experience. GNS302uLP architecture achieves these both aspects by providing flexibility and design choices for the system integration, based on wide range of use cases and by leveraging on the proven silicon methodologies. Also GNS302uLP provides position, velocity and time measurements without any host loading. This, coupled with the optional built-in power management options, reduces the overall system power budget. Selectable Power management features:

In Standby mode RF frontend and internal MPU are switched to deep sleep state. Power consumption is reduced. This state can be entered by sending the NMEA command: \$PMTK161,0*28<CR><LF>.
 Leaving standby mode and resuming to normal operation will be managed by sending any byte to the module.

Backup mode can be entered by sending NMEA command: \$PMTK225,4*2F<CR><LF>. The GPS core will shut down autonomously to backup state, Vcc supply can now be switched off by an external power supply switch.

Periodic mode describes a power mode, which will autonomously power on/off the module in programmable time slots with reduced fix rate. Periodic mode is useful during stationary operation or if position fixes are just needed from time to time. Since power consumption in GPS off times is nearly zero, the power consumption in periodic mode can be estimated by

 $P_{\text{tracking}} * (t_{\text{on}}/(t_{\text{on}}+t_{\text{off}})).$

Periodic mode is controlled with NMEA command \$PTMK225. See document *NMEAcommandInterface manual* for programming details.

Datasheet V0.4

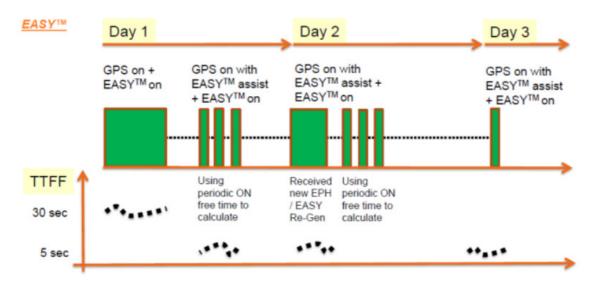
confidential information

preliminary specification

• AlwaysLocate™ feature provides an optimized overall GPS system power consumption in tracking mode under open sky conditions. Always Locate is an intelligent control of periodic mode. Depending on the environment and motion conditions, GNS302uLP can adjust the on/off time to achieve balance of positioning accuracy and power consumption. The best power saving will be made under good reception in stationary mode. Critical reception conditions and dynamic movements will need full activity of the GPS engine which causes

Power Consumption

Sleep Highway driving In office Urban driving Walking Outdoor static

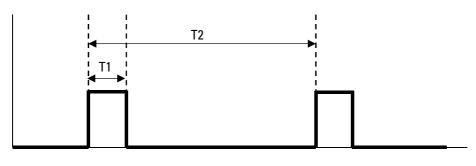

nominal power requirements (20mA typ in tracking mode).

3.4 EASY[™] self generated prediction data feature

GNS302uLP includes an internal prediction system, that allows to sample satellite orbit data during operation and use that data to speed up TTFF on later starts. The prediction time frame is up to three days forward.

Although this prediction feature does not provide the very short TTFF that is achieved using AGPS, it can help to find a fix solution faster and in weak signal condition scenario. Prediction data will be kept in memory as long as VBACKUP is present. This option is activated by default.

Note: The EASY functionality is only supported, if "V_{BACKUP}" pin is conntected and the NMEA update rate is 1Hz.


Datasheet V0.4

confidential information

preliminary specification

3.5 Pulse Per Second (PPS)

GNS302uLP provides a Pulse Per Second (PPS) hardware output pin for timing purposes. After calculation of a 3D position fix (default setting), the PPS signal is accurately aligned to the GPS second boundaries. The pulse generated is approximately 100 milliseconds in duration and the repetition rate is 1 second. On request PPS output can activated on a 2D- fix or after power-up of the module, providing a time accuracy decreased PPS signal.

T1 = 100ms T2 = 1sec

GNS302uLP module provides an exceptionally low RMS jitter of typical 10 nanoseconds.

PPS characteristics based upon a 3D-fix					
1PPS pulse duration	-	100	1	msec	
1PPS time jitter	-	10		nsec RMS	Pulse rising edge deviation from expected pulse time, measured with full 3D fix
1PPS rise and fall time		5		nsec	10%90%, load is 10k 5pF

3.6 Logger function

GNS302uLP provides an autonomous logger function that automatically stores position information in an internal 128kB flash memory. A complete tracking unit can be realized without any external CPU or memory.

The parameters for logging are programmable via the NMEA command interface. The following parameter can be set to optimize logging time:

- logger rate

The commands for logger include:

- start logging
- stop logging
- erase memory
- readout memory

please refer to the NMEAcommandInterface manual for details.

Internal Logger Function							
Logger data rate 1/15 1 1/s							
Logger data memory		128		kBytes	Flash memory		
Logger trigger		programmable			Logger can be triggered on various events		

Datasheet V_{0.4}

confidential information

preliminary specification

3.7 Active interference cancellation (MTAIC)

Because different wireless technologies like Wi-Fi, GSM/GPRS, 3G/4G, Bluetooth are integrated into portable systems, the harmonic of RF signals may influence the GPS reception.

The multi-tone active interference canceller can reject external RF interference which come from other active components on the main board, thus improving the performance of GPS reception.

GNS302uLP can cancel up to 12 independent continuous wave (CW) channels having signal levels of up to -80dBm. The functionality is enabled by default and increases power consumption by about 1mA.

3.8 SBAS (Satellite Based Augmentation) support

GNS302uLP supports Satellite Based Augmentation for improvement of the navigation precision. Correction data is sent from geostationary satellites to the GPS receiver. GNS302uLP supports European, US, and Asian augmentation systems (EGNOS, WAAS, GAGAN, MSAS, QZSS) to enable precision improvements in nearly every region of the world.

SBAS is active by default and will automatically track the available SBAS satellites. It can be disabled by NMEA command. See document NMEAcommandInterface manual for details.

Note: SBAS is deactivated in uLP mode. For SBAS activation, uLP mode must be disabled

3.9 GPS almanac and ephemeris data

For quick re-acquisition of the GPS after off-times, the GPS engine should have access to almanac and ephemeris data. This data is permanently stored inside GNS302uLP module, even if all power supplies have been removed. When the GPS is powered-up again, the data will be used to allow a quick re-acquisition, as soon as a coarse time information is available. Time will be available immediately, when RTC is kept running.

3.10 Real time clock (RTC)

GNS302uLP has a real time clock with 32,768Hz crystal onboard. As long as V_{BACKUP} is connected to a power source, the real time clock and the module memory can be kept alive at very low power consumption of just 7uA. The RTC will track the current time and enable the module to start from sleep states with very fast time to first Fix (TTFF).

3.11 UART interface

GNS302uLP core and I/O sections work at 3.3V nominal. Absolute Maximum Ratings should not be exceeded. Should the GNS302uLP be interfaced to a host with I/O at higher/lower levels, level shifters should be used. UART baud rate is 9600 baud by default. The baud rate can be modified to higher rates by a NMEA software command. See document NMEAcommandInterface manualfor details.

GPS UART Default Settings				
Parameter	Value			
Baud rate	9600 fixed			
Data length	8 bits			
Stop bit	1			
Parity	None			

Datasheet V0.4

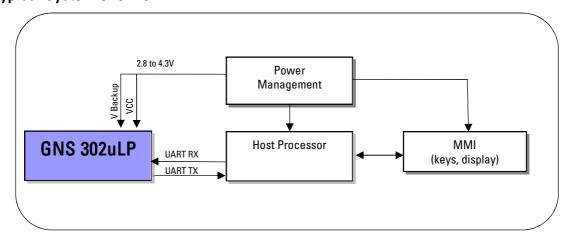
confidential information

preliminary specification

3.12 Module default settings

The GNS302uLP receiver comes with default settings, which are persistently programmed. Whenever power is removed from the module (both VCC and VBACKUP), the settings will be reset to the values shown in the following table.

NMEA output sentences					
Setting	Default value				
UART setting	9600,8,N,1				
Fix frequency (update rate)	1/sec				
NMEA sentences	\$GPRMC,\$GPGSA,\$GPGSV,\$GPGGA				
NMEA rate	Once a second				
Self survey prediction mode: EASY™	enabled				
Active interference cancellation:MTAIC	enabled				
Datum	WGS 84				
Logging parameters	Wrap when full / Content Basic / Interval 15 sec				
uLP ower Feature	Activated (disabled on request)				
Elevation mask	5°				


On request, other options can be selected as preprogrammed (persistent default) options.

Please contact the GNS support for your project requirements.

Note: Customized options are solely available for fixed order lots.

4 TYPICAL APPLICATION BLOCK DIAGRAM

4.1 Typical System Overview

Datasheet V0.4

confidential information

preliminary specification

5 GPS characteristics

5.1 GPS characteristics							
Parameter	Min	Тур	Max	Unit	Note		
	general						
Frequency		1575.42		MHz	GPS L1 C/A code		
SBAS					WAAS,EGNOS,MSAS,GAGAN,QZSS ¹		
Datum					WGS84		
AGPS	7		14	days	Configurable		
Output data frequency	1/10	1	10	1/sec	1/s in uLP mode		
Navigation&tracking sensitivity ¹		-165		dBm	autonomous		
Acquisition sensitivity ¹		-148		dBm	Cold start		
Reacquisition sensitivity ¹		-163		dBm	Hot start		
TTFF hotstart		1		sec	6 SVs @-130dBm		
TTFF autonomous warm start		34		sec	6 SVs @-130dBm		
TTFF autonomous warm start		510		sec	6 SVs @-130dBm / with EASY on		
TTFF autonomous cold start		35		sec	6 SVs @-130dBm		
Reacquisition time		<1		sec	6 SVs @-130dBm		
Number of channels tracking		22					
Number of acquisition channels		66					
Dimension		15.7x10x2		mm	Tolerance is 0.2 mm		
Weight		0.64		g			

Note:

Only available when uLP mode is disabled

Accuracy					
Position error (50%CEP)	-	4	-	m	2D-RMS
Position error (50%CEP)	-	2.5	-	m	Using (SBAS) , uLP mode disabled
Velocity error	-	0.1	-	m/s	
velocity error	-	0.05	-	m/s	Using (SBAS) , uLP mode disabled

Antenna specifications					
Frequency	-	1575.42	-	MHz	
VSWR	-	-	2	-	f = 1575.4 MHz
gain	-	3.2	-	dB	peak@zenith , f = 1575.4 MHz
impedance	-	50	-	Ohm	f = 1575.4 MHz
Polarization		Linear		-	

ITAR limits						
Operation altitude - 18,000 m						
Operation velocity	-	-	515	m/s		
Operation acceleration	-	-	4	G		

¹ note: based on chip specifications

Datasheet V0.4

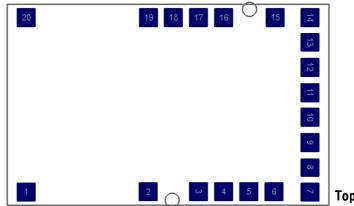
confidential information

preliminary specification

6 ELECTRICAL SPECIFICATION

6.1 Absolute Maximum Ratings					
Parameter	Value	Unit			
Supply voltage: Vcc	-0.5 to 4.3	V			
Backup voltage: V _{BACKUP}	-0.5 to 4.3	V			
Input voltage to analog pins	-0.5 to 3.3	V			
Input voltage to all other pins	-0.5 to Vcc	V			
Operating ambient temperature range	-40 to +85	°C			
Storage temperature range	−50 to +125	°C			

Parameter	Min	Тур	Max	Unit	Note
V _{cc}	2.8	3.3	4.3	V	supply voltage
V _{cc} ripple voltage			50		mVpp
V_{BACKUP}	2.0	3.0	4.3	V	Backup voltage for RTC and memory retention, must be available during normal operation
High level output voltage V _{OH}	2.38		2.9	V	
Low level output voltage V_{0L}	0		0.42	V	
High-level input voltage VIH	2.1		3.5	V	
Low-level input voltage VIL	-0.3		0.7	V	
Operating temperature	-40		85	°C	Full specified sensitivity



Datasheet V0.4

confidential information

preliminary specification

7 PIN CONFIGURATION

Top View

Pin	Name	1/0	Description & Note				
1	GND		Ground				
2	WAKEUP	1	Wakeup input (TBD) leave open				
3	NC		Not connected				
4	3D_FIX	0	3D-Fix Indicator The 3D_FIX is assigned as a fix flag output. If not used, keep floating.				
			Before 2D Fix The pin will continuously toggle with 1 Hz. output 100ms high-level and 0.9s low-level signal				
			After 2D or 3D Fix The pin will continuously output low-level signal				
5	GND		This pin must not be connected to high-level at power-on sequence. Ground				
6	GND		Ground				
7	RXA	1					
,	KXA	I	Serial Data Input A for NMEA commands (TTL) This is the UART-A receiver of the module. It is used to receive commands from system				
8	TXA	0	Serial Data Output A for NMEA output (TTL)				
Ū	1701		This is the UART-A transmitter of the module. It outputs GPS information for application.				
9	RXB	I	Serial Data Input B				
			This is the UART-B receiver of the module. It is used to receive RTCM data from system				
10	NC		Not connected				
11	1PPS	0	1PPS Time Mark Output 2.8V CMOS Level				
12	NC		This pin provides one pulse-per-second output from the module and synchronizes to GPS time. Keep floating if not used. Not conected				
13		P					
13	V_{BACKUP}	r	Backup power input for RTC & navigation data keep This connects to the backup power of the GPS module. Power source (such as battery) connected to this pin will help the GPS chipset in keeping its internal RTC running when the main power source is turned off. The voltage should be kept between 2.8V-4.3V, Typical 3.3V. If V _{BACKUP} power was not reserved, the GPS receiver will perform a lengthy cold start every time it is powered-on because previous satellite information is not retained and needs to be re-transmitted. This pin must be connected for normal operation.				
14	VCC	Р	Main DC power input The main DC power supply for the module. The voltage should be kept between from 2.8V to 4.3V. The ripple must be limited under 50mVpp (Typical: 3.3V).				
15	GND		Ground				
16	GND		Ground				
17	NC	•	Not conected				
18	NC		Not conected				
19	RESET	ı	System reset pin				
			An external reset applied to this pin overrides all other internal controls. RESET# is an active low signal. Pulling this pin low for at least 20 µs				
20	GND		Ground				
20	עווט		טוטעווע				

⁽¹⁾ I = INPUT; 0 = OUTPUT; I/0 = BIDIRECTIONAL; P = POWER PIN; ANA = ANALOG PIN.

Datasheet V_{0.4}

confidential information

preliminary specification

8 NMEA DATA interface

GNS302uLP provides NMEA (National Marine Electronics Association) 0183 compatible data.

A set of proprietary NMEA commands are available to send control messages to the module.

These commands are described in a separate document: NMEA_Interface_manual_MTK_Vx manual.

For standard operation, no commands are needed; the module will start outputting NMEA sentences after power supply has been attached. GNS302uLP will always start communication output with 9600 bit per second.

If non standard options are needed (f.e. other baud rate, other NMEA sequence) they can be programmed from host controller during runtime.

Important note: options set by using NMEA command interface are not persistent! They will be lost when power is removed. A backup supply at V_{BACKUP} will be sufficient to keep them.

8.1 NMEA output sentences

NMEA output sentences			
Туре	Type content		
	Common GPS sentences		
\$GPRMC	Recommended Minimum Navigation Information		
\$GPGGA	Fix Data, Time, Position and fix related data for a GPS receiver		
\$GPGSA	DOP and active satellites		
\$GPGLL	Geographic Position - Latitude/Longitude		
\$GPGSV	GPS Satellites in view		

8.2 NMEA command interface

GNS302uLP NMEA command interface allows to control settings and the extended functions. The command interface specification is available in an extra document: NMEA_Interface_manual_MTK_Vx manual.

Two groups of commands are available:

Setting commands do modify the behavior of the module.

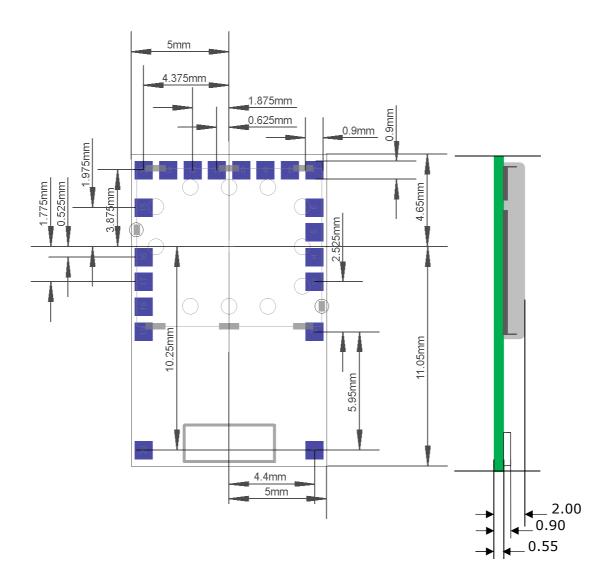
Note: modified settings will be valid as long as the module is powered through V_{BACKUP} . (f.e.: setting of a new baud rate). After removing V_{BACKUP} , all settings are reset to their default values.

Action commands will perform the specified action one time after the command has been received. (f.e.: request for cold start)

Commands are always started with PTMK, directly followed by the command number 000..999. Each command must be terminated by *<chksum>and a <CR><LF>.

The checksum calculation is simple, just XOR all the bytes between the \$ and the * (not including the delimiters themselves). Then use the hexadecimal ASCII format.

Datasheet V0.4


confidential information

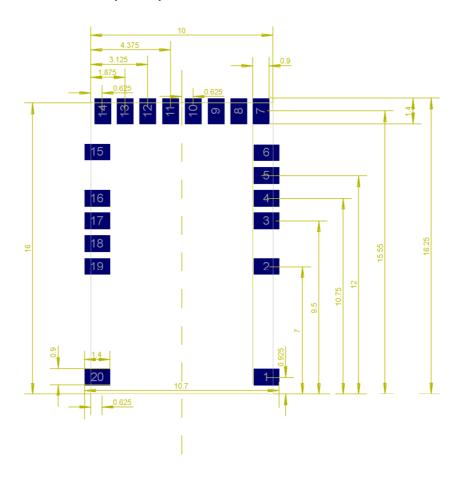
preliminary specification

9 PHYSICAL DIMENSIONS

TOP VIEW

all units in mm, tolerance is ±0.2mm

Datasheet V0.4


confidential information

preliminary specification

10 RECOMMENDED PAD LAYOUT

all units in mm

Footprint Top View

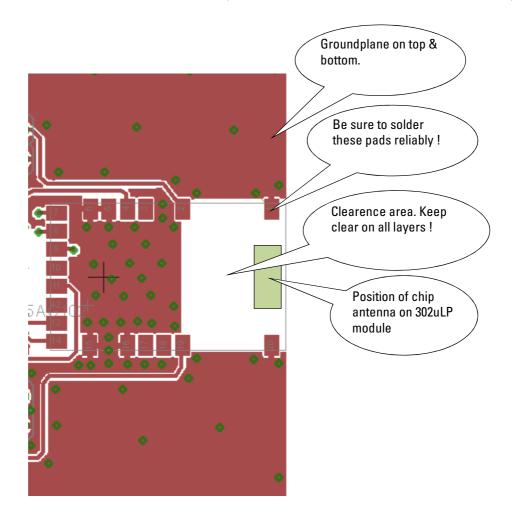
Datasheet V0.4

confidential information

preliminary specification

11 DESIGN GUIDELINES

Although GNS302uLP GPS receiver provides best performance at low power consumption, special care should be taken to provide clean signal and clean power supplies. Power lines should be blocked near to the receiver with low ESR capacitors. Radiated noise from neighbour components may also reduce the performance of the receiver.


11.1 PCB LAYOUT GUIDELINES

GNS302uLP uses a high performance chip antenna design.

For optimum performance, a ground plane area is needed on the main board. This area should be at least 20 x 30mm, a larger ground like 30 x 60mm is recommended.

The groundplane can be part of the main ground layer of the mainboard, some (small) components in the neighbourhood of the antenna are acceptable. Do not place any bulky or metallic components near to the antenna (in a distance below 30mm) to avoid unwanted electromagnetic shielding effects.

It's recommended to place GNS302uLP at the rim of the main PCB, so that the antenna has a wide unobstructed working angle.

Datasheet V_{0.4}

confidential information

oreliminary specification

The marked clearance area below the antenna must be kept clear in any case! Do not design any copper tracks or planes in the clearance area!

The two ground solder pads near the chip antenna must be reliably soldered to mainboard groundplanes to make the antenna work at high performance.

Please do not place any shielding or lids in the area 5mm below your PCB under the Clearance area. Plastic enclosures can also have impact on the antenna. Avoid that the antenna is in touch with any enclosure parts. Product testing should be performed with the PCB already mounted in the final enclosure. Generally the rules for good and low noise design should be followed:

- → Use a solid ground plane, best on layer 2 of the mainboard
- → Keep noisy components (µC, switch mode supplies) as far as possible away from sensitive antenna inputs
- → Place decoupling capacitors near to the source of noise and provide a short and low induction connection to ground (use multi-vias if needed)
- → EMC filters or noise filtering coils or beads can help to reduce the noise level further.
- → Select system clocks in a way, that no harmonics will match the GPS frequency of 1575.42 MHz

Datasheet V_{0.4}

confidential information

preliminary specification

12 NMEA DATA interface

GNS302uLP provides NMEA (National Marine Electronics Association) 0183 compatible data.

A set of proprietary NMEA commands is available to send control messages to the receiver.

These commands are described in a separate document: NMEA_Interface_manual_MTK_Vx.

For standard operation, no commands are needed; the module will start outputting NMEA sentences after power supply has been attached. GNS302uLP will always start communication output with 9600 bit per second.

If non standard options are needed (f.e. other baud rate, other NMEA sequence) they can be programmed from host controller during runtime.

Important note: Options set by using NMEA command interface are not persistent! They will be lost when power is removed. A backup supply at V_{BACKUP} will be sufficient to keep them.

12.1 NMEA output sentences

NMEA output sentences		
Туре	Type content	
Common GPS sentences		
\$GPRMC	Recommended Minimum Navigation Information	
\$GPGGA	Fix Data, Time, Position and fix related data for a GPS receiver	
\$GPGSA	DOP and active satellites	
\$GPGLL	Geographic Position - Latitude/Longitude	
\$GPGSV	GPS Satellites in view	

Refer to NMEA Interface manual MTK Vx document for more information.

12.2 NMEA command interface

GNS302uLP NMEA command interface allows to control settings and the extended functions. The command interface specification is available in an extra document: NMEA_Interface_manual_MTK_Vx.

Two groups of commands are available:

Setting commands do modify the behavior of the module.

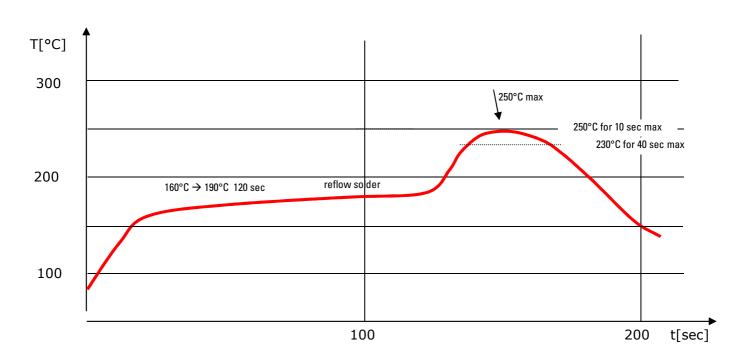
Note: Modified settings will be valid as long as the module is powered through V_{BACKUP} . (f.e.: setting of a new baud rate). After removing V_{BACKUP} , all settings are reset to their default values.

Action commands will perform the specified action one time after the command has been received. (f.e. : request for cold start)

Commands are always started with \$PTMK, directly followed by the command number 000..999. Each command must be terminated by *<chksum>and a <CR><LF>.

The checksum calculation is simple, just XOR all the bytes between the \$ and the * (not including the delimiters themselves). Then use the hexadecimal ASCII format.

Datasheet V0.4


confidential information

preliminary specification

13 MATERIAL INFORMATION

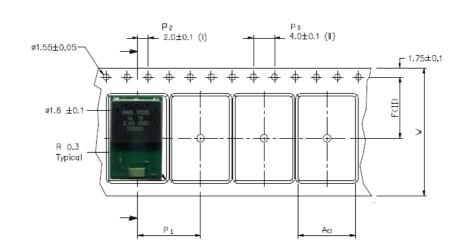
Complies to ROHS standard ROHS documentations are available on request Contact surface: gold over nickel

14 RECOMMENDED SOLDERING REFLOW PROFILE

Notes:

- 1. GNS302uLP should be soldered in upright soldering position. In case of head-over soldering, please prevent shielding / GNS302uLP receiver from falling down.
- 2. Do never exceed maximum peak temperature
- 3. Reflow cycles allowed: 1 time
- 4. RohS compliance status will be lost if soldered with solder containing lead (Pb).
- 5. This device is not applicable for flow solder processing
- 6. This device is not applicable for solder iron process

Datasheet V0.4


confidential information

preliminary specification

15 PACKAGE INFORMATION

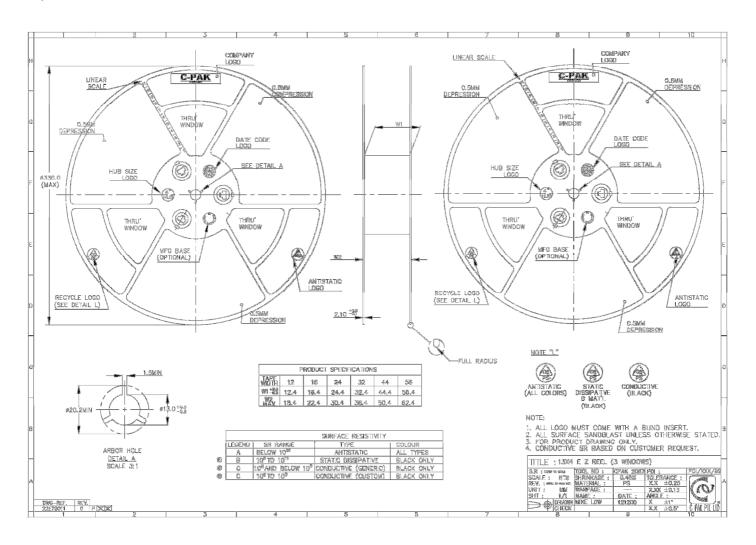
15.1 TAPE

Αo	10.90 +/- 0.1
Bo	15.82 +/- 0.1
K٥	3.00 +/- 0.1
F	11.50 +/- 0.1
P ₁	12.00 +/- 0.1
W	24.00 +/- 0.3

- Measured from centreline of sprocket hole to centreline of pocket Cumulative tolerance of 10 sprocket holes is ± 0.20 .

 Measured from centreline of sprocket hole to centreline of pocket.
- $\langle III \rangle$
- Other material available.

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.



Datasheet V0.4

confidential information

preliminary specification

15.2 **REEL**

Number of devices: 1500 pcs/reel

Datasheet V0.4

confidential information

preliminary specification

16 ORDERING INFORMATION

Ordering information			
Туре	Part#	label marking	Description
GNS302uLP	4037735105393	GNS302uLP YYWW 2.5_39 SN	GNS302uLP GPS receiver YYWW → date code FW Version SN → serial number

17 QUALITY AND ENVIRONMENTAL SPECIFICATIONS

Test	Standard	Parameters	
PCB Inspection	IPC-6012B, Class 2. Qualification and Performance Specification for Rigid Printed Boards - Jan 2007		
Assembly Inspection	IPC-A-610-D, Class 2 "Acceptability of electronic assemblies"		
Temperature Range	ETSI EN 300 019-2-7 specification T 7.3	-30 °C, +25 °C, +85 °C, operating	
Damp Heat	ETSI EN 300 019-2-7 specification T 7.3	+70 °C, 80% RH, 96 hrs, non-operating	
Thermal Shock	ETSI EN 300 019-2-7 specification T 7.3 E	-40 °C +85 °C, 200 cycles	
Vibration	IS016750-3	Random vibration, 10~1000Hz, 27.8m/s ² , 8hrs/axis, X, Y, Z 8hrs for each 3 axis non-operating	
Shock	ISO16750-3	Half-sinusoidal 50g, 6ms, 10time/face, ±X, ±Y and ±Z non-operating	
Moisture/Reflow Sensitivity	IPC/JEDEC J-STD-020D.1	MSL3	
Storage (Dry Pack)	IPC/JEDEC J-STD-033C	MSL3	
Solderability	EN/IEC 60068-2-58 Test Td	More than 90% of the electrode should be cove-red by solder. Solder temperature 245 $^{\circ}\text{C} \pm 5 ^{\circ}\text{C}$	

Moisture Sensitivity

GNS ships all devices dry packed in tape on reel with desiccant and moisture level indicator sealed in an airtight package. If on receiving the goods the moisture indicator is pink in color or a puncture of the airtight seal packaging is observed, then follow J-STD-033 "Handling and Use of Moisture/Reflow Sensitive Surface Mount Devices".

Storage (Out of Bag)

The GNS 302uLP modules meet MSL Level 3 of the JEDEC specification J-STD-020D - 168 hours Floor Life (out of bag) ≤30 °C/60% RH. If the stated floor life expires prior to reflow process then follow J-STD-033 "Handling and Use of Moisture/Reflow Sensitive Surface Mount Devices".

RoHS COMPLIANT 2002/95/EC

This product is free of environmental hazardous substances and complies with 2002/95/EC. (RoHS directive).

Datasheet V0.4

confidential information

preliminary specification

18 DOCUMENT REVISION HISTORY

V0.1	Sep 23 2015	P.Skaliks	initial document, preliminary
V0.2	Jan 26 2016	P.Skaliks	Laser marking def
V0.3	Dec 21 2016	0.Diegel	Package Information / General review
V0.4	Oct 04 2018	M.Heinzel	New company CI

19 RELATED DOCUMENTS

Title	Description / file	Available from
NMEA_Interface_manual_MTK_Vx	Detailed description of NMEA commands and protocol	www.forum.gns-gmbh.com www.gns-gmbh.com

© GNS - Electronics GmbH 2018

THE INFORMATION IN THIS DOCUMENTATION DOES NOT FORM ANY QUOTATION OR CONTRACT. TECHNICAL DATA ARE DUE TO BE CHANGED WITHOUT NOTICE.

NO LIABILITY WILL BE ACCEPTED BY THE PUBLISHER FOR ANY CONSEQUENCE OF THIS DOCUMENT'S USE.

REPRODUCTION IN WHOLE OR IN PART IS PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF THE COPYRIGHT OWNER