

confidential information preliminary specification

TC6000

1 INTRODUCTION

GNS, developer and manufacturer of module solutions for 10 years, presents the new **TC6000** series multifunction module which incorporates 4 wireless functionalities in one single device.

It integrates *Global Positioning System* (GPS), *Bluetooth* (BT) and *FM transceiver* for FM data reception (Traffic Message Channel) and audio transmission.

Features

- GPS, Bluetooth, FM receiver or transmitter in one module
- GPS tracking&navigation sensitivity -162dBm
- Assisted-GPS (A-GPS)
- GPS SAW filter and TCXO included
- Pulse Per Second (PPS) output for timing and synchronization applications
- Dedicated GPS processing
- Low load on host CPU
- Support of Bluetooth 3.0+EDR up to HCI level
- FM RDS encoder/decoder
- Analog & digital audio interfaces
- Host computer (PDA / Notebook / embedded /phone) drivers & API available
- Proven TMC solution (GPSTMC-API) available
- Low power consumption (210mW @ all cores in full operation)
- Only one single power supply (1.8V) needed
- Single electrical interface for GPS, Bluetooth, FM
- Miniature 36 pin module (10x9.3x2.3) mm

Evaluation Boards:

- TC6000 Starter Kit for testing on different host platforms
- \circ $\,$ Plug-in for TI OMAP 3530 $\,$ EVM board $\,$

Applications

- Navigation
 - in-vehicle Navigation equipment, supports localization, traffic info (TMC) and wireless (Bluetooth) connectivity
 - dynamic Navigation
 - portable ("nomadic") devices
 - Netbooks, tablet PCs and mobile phones
- Timing
 - precision timing via GPS
 - Femto cell application
 - Location based applications
 - GPS Logger
 - GPS Tracker
 - Security devices
 - Camera equipment

TC6000

confidential information preliminary specification

2 INDEX

1 I	NTRODUCTION	1
2 I	NDEX	·-2
3 C	ETAILED FEATURES	4
3	.1 GPS Features	4
3	.2 Bluetooth Features	4
3	.3 Bluetooth Link Features	4
с л т	.4 FM Fedlures	5
4 I E C	VCTEM DEQUIDEMENTS	-0 6
25	1 High speed LIADT interface with HW handshake	-0
5	2 Start up of TC6000	7
5	.3 GPS	·7
5	.4 Enable line	7
5	.5 Real time clock (RTC)	7
5	.6 I/U levels DIACDAM	/
	VEVICE PINOUT DIAGRAM	ð
/ E		10
8 E	LUEIOOIH CORE	12
8	.1 Bluetooth core description	12
96		14
9	2 GPS core description	14 15
9	.3 GPS almanac and ephemeris data	16
9	.4 GPS antenna	17
9	.5 Pulse Per Second (PPS)	18
9	.6 NMEA Data	18
10		19
1	0.2 EM TRANSMITTER	· 19 . 22
11	0.2 PH ΠΑΝΟΠΤΤΕΚ ΡΩWER ΜΔΝΔGEMENT	22
1	1.1 Power-Up/Power-Down Sequence in Shared UART Mode	- 25
1	1.2 Shutdown and Reset	25
12	RTC CLOCK	26
13	HARDWARE HOST INTERFACE	27
1	3.1 UART specifications	27
1	3.2 Fully Shared Host Interface Connection through UART:	29
1	3.3 Shared UART for BT/FM & dedicated 2 ¹¹⁰ UART for GPS:	30
11		30 21
15		27
12	DIGITAL AUDIO	3Z
1	5.2 Bluetooth/FM Audio Bus Sharing for voice applications (HE & HS profiles)	- 32
1	5.3 PCM and I2S Timings	34
16	PHYSICAL DIMENSIONS	35
17	RECOMMENDED PAD LAYOUT	36
18	MATERIAL INFORMATION	36
19	RECOMMENDED SOLDERING REFOLW & GLUE HARDENER PROFILE	37
20		38
21	REFL INFORMATION	39
22	ORDERING INFORMATION	30
22		40
24	MOISTURE SENSITIVITY	40
<u> </u>		2

© GNS-GmbH 2012 V 0.17, June 08th 2012

TC6000

confidential information preliminary specification

25 DOCUMENT REVISION HISTORY	40
	. 11
	41
27 PACKAGING	41

TC6000

confidential information preliminary specification

3 DETAILED FEATURES

3.1 GPS Features

- Significantly improved TTFF at low signal power levels provides the consumer with a compelling GPS experience
- Improved acquisition performance down to -147 dBm to process position fixes in deep indoor conditions
- Reduced power consumption through improvements to RF architecture, software techniques, receiver core, and RF noise figure partitioning
- Improved tracking performance and minimized error in multi-path environments through increased IF bandwidth and higher sampling rates in tracking channels
- Integrated APM (advanced power management) performs automatic dynamic power saving dependent on the signal conditions. Up to 70% power savings at 1 update per second.
- GNS software drivers will provide one or more virtual COM ports to support multiple applications

3.2 Bluetooth Features

- Support of Bluetooth 3.0+EDR up to HCI level
- Supports typically 12.5 dBm Class1.5 TX power w/o external PA, improving BT link robustness
- Digital Radio Processor (DRP) single-ended 50 Ω I/O for easy RF interfacing
- Internal temperature detection and compensation ensures minimal variation in the RF performance over temperature
- Flexible PCM digital audio/voice interfaces
- Proprietary low-power scan method for page and inquiry scans, achieves page and inquiry scans at 1/3rd normal power

3.3 Bluetooth Link Features

TC 6000 supports all the features described in the Bluetooth specification 3.0, including:

- All lower layers up to HCI (Link Controller, Link Manager, host controller interface and UART transport layer)
- Scatternet: Up to three piconets simultaneously, one as master and two as slaves
- Up to seven active devices
- Up to two SCO links on same or different piconets
- Voice and audio over HCI
- All packet types
- Pairing, authentication, encryption, inquiry, inquiry-scan, page, page-scan, hold, sniff, park, M/S switch, broadcast, QoS, test mode, flow specification, and flush timeout functions
- Sound: All BT formats
- Class 1 to Class 3 Power control
- RSSI: range of -88 dBm to -20 dBm with 3-dB accuracy
- Adaptive frequency hopping: Hopping kernel supports several hopping sets and channel classification as either Master or Slave.

confidential information preliminary specification

3.4 FM Features

- On-chip FM receiver and transmitter with RDS (and RBDS) support for both functions
- Digital Input/Output and analog audio output interface for transmit and receive
- FM can transmit or receive radio station signals, perform scans, and send RDS to host, while BT can be in any operational mode
- No simultaneous receive and transmit
- Compatibility with both European/US FM bands (87.5 MHz to 108 MHz)
- Digital I2S/PCM audio interface for stereo/mono with selectable master or slave, data/slot offset, data-width, etc.
- Multiple digital audio data path through BT PCM or FM I2S interface
- Maximally digital implementation (digital MPX signal and digitally-controlled RF AGC function)
- Receive capability via TX RF interface to find best FM channels for transmission, without requiring FM antenna

3.4.1 FM Radio Receiver Features

- Enhanced, full-featured FM receiver with best-in-class sensitivity level audio quality
- Frequency resolution: 50-kHz step tuner, fast, independent up/down function
- Supports primary standard audio sample rates: 32, 44.1, and 48 ksample/s
- Integrated RDS/RDBS features with fast PI matching and Block-B matching; 256 Bytes RDS FIFO
- Stereo/Mono switched/soft blend on signal condition
- Selectable 50-µs/75-µs de-emphasis filter
- Software selectable level for soft mute and stereo/mono blend level
- Internal tuned matching network
- Soft mute and programmable pause detect

3.4.2 FM Transmitter Features

- FM transmitter enables playing an audio file from either a handset or an FM Hi-Fi system:
 - Wide dynamic transmitter output power range to comply with FCC/ETSI
 Flexible antenna interface
- Fully-integrated FM transmitter with complete FCC- and ETSI-compliant implementation
- Internally-generated digital MPX signal and RDS data with minimal communication to host
- RDS/RBDS data as program service or radio text message
- Automatic scrolling of text for PS display
- Configurable I2S/PCM sample-rates support all standard MP3 rates (48 kHz, 44.1kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 12 kHz, and 8 kHz with various bit-clock rates support, up to 6.144 MHz)
- Selectable 50-µs/75-µs de-emphasis filter
- Programmable output power
- Programmable channel resolution frequency (50 kHz, 100 kHz, or 200 kHz)
- Internally filtering to minimize cellular band interference
- Internally-generated digital MPX signal and RDS/RBDS data, with automatic text scrolling

TC6000

confidential information preliminary specification

5 SYSTEM REQUIREMENTS

TC6000 includes complete cores for 4 functionalities. It removes most of the processing load from the host:

- GPS is fully processed without any host power requirements,
- FM RDS is completely decoded
- Bluetooth is supported up to the HCI interface layer.

However there are some conditions that must be met:

5.1 High speed UART interface with HW-handshake

TC 6000 supports transport of all data streams through a single high speed UART. Regarding hardware, the host CPU has to provide one high speed UART port with (RTS, CTS) hardware handshake, that can run at a minimum of 2Mbps and a maximum of 4Mbps. This high speed interface transports a proprietary protocol. GNS drivers will manage the splitting of the data streams and decode the proprietary protocol to:

- NMEA for GPS,
- GNS protocol3.5 for FM & RDS
- and HCI standard interface for Bluetooth

Drivers can be downloaded at http://www.forum.gns-gmbh.com/

confidential information preliminary specification

TC6000

5.2 Start up of TC6000

TC6000 works with a flexible firmware concept. Before starting up the function cores, a firmware transfer has to be performed. For this task, a non-volatile memory (ROM or flash) of at least 120kBytes is needed to store the firmware add-ons.

The firmware add-ons will be available as part of the GNS driver.

The GNS driver will automatically download this data to TC6000 whenever needed.

5.3 GPS

GPS almanach, ephemeris and clock time has to be kept in host memory during standby and offtimes. The GNS driver manages this task in the background.

5.4 Enable line

One further I/O from the host will be needed as a master activity and reset control for the TC6000. This I/O will be supported by GNS drivers.

5.5 Real time clock (RTC)

TC6000 includes a real time clock that will provide time information for GPS after an off-time. The clock signal of 32.768kHz is not on-module and has to be fed at pin *RTC_CLK*. Additionally, the clock signal is needed for some other chip-internal purposes. See chapter *RTC Connection* for more details.

5.6 I/O levels

TC6000 cores and I/O sections work at 1.8V nominal. Please never apply any higher voltages as specified under absolute maximum ratings!

If TC6000 should be interfaced to a host that works with higher logic voltages, please add level shifters.

TC6000

confidential information preliminary specification

6 DEVICE PINOUT DIAGRAM

TOP VIEW

F	VDD_IO	GND	тх	N.U.	BT_ENABLE	BT_RF
E	VDD	GND	CTS	RX	RX RTS	
D	BT_AUD_CLK	BT_AUD_FSYNC	BT_AUD_IN	BT_AUD_OUT	N.U.	FM_I2S_CLK
с	GPS_PPS	TCXO_CLK	GPS_TX	GPS_ENABLE	RTC_CLK	FM_I2S_IN
в	GPS_RF	GPS_GND	GPS_RX	GND_FM	GND_FM	FM_I2S_FSYNC
A	GPS_GND	GPS_GND	FM_AUD_R_OUT	FM_AUD_L_OUT	FM_TX_RF	FM_RX_RF
	1	2	3	4	5	6

TC6000

confidential information preliminary specification

NO	NAME	TYPE ¹	DESCRIPTION							
	Power-Management Signals									
E1	VDD	Р	1.8V Power supply voltage							
F1	VDD IO	Р	1.8V I/O power supply voltage							
C4	GPS ENABLE	Ι	Shutdown control for the GPS core							
F5	BT_ENABLE	Ι	Shutdown control for the BT and FM cores							
F2	GND	Р	Common Ground							
E2	GND	Р	Common Ground							
			Clock Signals							
C2	TCXO_CLK	0	Output of internal TCXO							
C5	RTC_CLK	Ι	Sleep clock input: 32.768 kHz. Fail-safe.							
			GPS Signals							
B1	GPS_RF	Ana	GPS RF input to the device							
C3	GPS_TX	0	GPS UART TX							
B3	GPS_RX	Ι	GPS UART RX							
C1	GPS_PPS	0	GPS Pulse per second							
A1	GPS_GND	Ana	GPS Ground							
A2	GPS_GND	Ana	GPS Ground							
B2	GPS_GND	Ana	GPS Ground							
			BT Signals							
F6	BT RF	Ana	BT RX/TX Single-ended port							
D1	BT AUD CLK	I/O	PCM/I2S clock							
D2	BT_AUD_FSYNC	I/O	PCM/I2S frame synchronization							
D3	BT_AUD_IN	I	PCM/I2S data input							
D4	BT_AUD_OUT	0	PCM/I2S data output							
E6	GND_BT	Ana	BT GND							
			FM Signals							
A5	FM_TX_RF	Ana	Single-ended FM RF-out							
A6	FM_RX_RF	Ana	Single-ended FM RF-in							
A3	FM_AUD_R_OUT	0	FM analog audio out (right)							
A4	FM_AUD_L_OUT	0	FM analog audio out (left)							
B6	FM_I2S_FSYNC	I/O	FM I2S frame sync line							
C6	FM_I2S_IN	Ι	FM I2S data input							
D6	FM_I2S_CLK	I/O	FM I2S clock line							
B4	GND_FM	Ana	FM Ground							
B5	GND_FM	Ana	FM Ground							
			Shared UART							
E4	RX	Ι	Shared UART RX from host							
F3	ТХ	0	Shared UART TX from host							
E5	RTS O Shared UART request to send to host									
E3	E3 CTS I Shared UART clear to send from host									
			Not Used Pins							
F4			Do not connect							
D5			Do not connect							
C2			Do not connect							

(1) I = input; O = output; I/O = bidirectional; P = power pin; ANA = analog pin.

DO NOT CONNECT N.U. PINS TO ANYWHERE ! MUST BE LEFT OPEN.

TC6000

confidential information preliminary specification

7 ELECTRICAL SPECIFICATION

Absolute Maximum Ratings							
Parameter	Value	Unit					
Supply voltage range: VDD	-0.5 to 2.1	V					
Supply voltage range: VDD_IO	-0.5 to 2.1	V					
Input voltage to analog pins ¹	-0.5 to 2.1	V					
Input voltage to all other pins	-0.5 to (VDD_I/O + 0.5)	V					
Operating ambient temperature range	-40 to +85	°C					
Storage temperature range	-55 to +125	°C					

1. BT_RF, GPS_RF, FM_TX_RF, FM_RX_RF, FM_AUD_I/O

2. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions							
Parameter	Min	Тур	Max	Unit	Note		
VDD	1.7	1.8	1.95	V	Power-supply voltage		
VDD_IO	1.65		1.92	V	I/O power-supply voltage		
			60	mVpp	0 MHz to 0.1 MHz		
			50	mVpp	0.1 MHz to 0.5 MHz		
Maximum ripple on VDD			30	mVpp	0.5 MHz to 1.7 MHz		
			25	mVpp	1.7 MHz to 2.5 MHz		
			15	mVpp	2.5 MHz to 3.3 MHz		
			5	mVpp	Greater than 3.3 MHz		

I/O characteristics							
Parameter	Min	Тур	Max	Unit	Note		
High lovel output veltage V	0.8 * V _{DD}		V _{DD}	V	IOUT = 4 mA		
Thigh level output voltage V _{OH}	1,45		V _{DD}	V	IOUT = 0.4 mA		
Low level output voltage V_{OL}	0		0.2*V _{DD}	V	IOUT = 4 mA		
	0		0.2	V	IOUT = 0.4 mA		
High level input voltage $V_{\mbox{\scriptsize IH}}$	0.65x VDD_IO		1.92	V			
Low level output voltage $V_{\mbox{\scriptsize IL}}$	0		0.35x VDD_IO	V			
I/O input impedance	1			MΩ	resistive		
			5	pF	capacitive		
Output rise & fall times t _r ,t _f			10	ns	Digital I/O		
Pull down current on BT_ENABLE and GPS_ENABLE	4	6	10	μA			
Rise fall time on BT_ENABLE and GPS_ENABLE			20	µsec			
Minimum width on BT_ENABLE and GPS_ENABLE			5	msec			

10 © GNS-GmbH 2012 V 0.17, June 08th 2012

confidential information preliminary specification

Current Consumption							
Parameter	Min	Тур	Max	Unit	Note		
		ge	eneral				
Current consumption in shutdown (BT + GPS)		10		uA	At +25°C		
Total I/O current in shutdown			5	uA	At +25°C		
Total current (BT + GPS+ FM)		121	133	mA	BT in EDR / GPS in acquisition / FM transmit mode		
		GPS	engine				
GPS IDLE		5.64		mA			
GPS DEEP SLEEP		60	192	uA			
GPS ACTIVE (acquisition)		63	76	mA	NMEA frequency = $1/sec$		
GPS ACTIVE (tracking)		40	50	mA	NMEA frequency = $1/sec$		
GPS ACTIVE (tracking)			9.5	mA	NMEA frequency=1/sec,- 130dBm,APM feature active		
		BT	engine				
BT Idle current (ARM off)		4.5		mA			
SCO link HV3		14.1		mA			
eSCO link EV3 64Kbps		14.3		mA			
eSCO link 2-EV3 64Kbps		10.6		mA			
EDR full throughput		42.7		mA			
Sniff, 1 attempt, 1.28sec		135	180	μA			
Page or Inquiry Scan 1.28 s		415		μA			
Low power scan, 1.28 s interval		170		μA			
FM engine							
FM receiver mode current		12		mA			
FM transmitter mode full output level		14.3		mA			

Conditions: VDD_IN = 1.8 V, 25°C, BT : 4 dBm output power.

confidential information preliminary specification

TC6000

8 BLUETOOTH CORE

8.1 Bluetooth core description

The TC6000 Bluetooth core supports BT3.0 +EDR. It uses a state-of-the-art digital radio processor architecture and ensures stable operation without any alignment necessary.

8.1.1 Bluetooth receiver

The receiver uses near-zero-IF architecture to convert the RF signal to baseband data. Received signal from the external antenna is input to a single-ended LNA (low-noise amplifier). This signal is then passed to a mixer which down converts the signal to IF, followed by a filter and amplifier. The signal is then quantized by a sigma-delta ADC. The quantized signal is further processed to reduce the interference level.

The demodulator digitally down converts the signal to zero IF and recovers the data stream by an adaptive-decision mechanism. The demodulator includes EDR (enhanced data rate) processing with state-of-the-art performance. It includes a maximum-likelihood sequence estimator (MLSE) for improved performance of basic-rate GFSK sensitivity, and adaptive equalization to enhance EDR modulation.

New features include:

• The LNA input range is narrowed to increase blocking performance

Bluetooth RF characteristics								
Parameter Min Typ Max Unit Note								
Operating frequency range	2402		2480	MHz				
Channel spacing		1		MHz				
Input impedance		50		Ω				
Rx sensitivity	-91.5	-95		dBm	GFSK, BER = 0.1%			
	-90.5	-94.5		dBm	Pi/4-DQPSK, BER = 0.01%			
	-83	-87.5		dBm	8DPSK, BER = 0.01%			
Tx power			12	dBm	Up to class 1.5			

Active spur cancellation increases robustness to spurs

8.1.2 Bluetooth transmitter

The transmitter is an all-digital, sigma-delta PLL (ADPLL) based, with a digitally-controlled oscillator (DCO) at 2.4 GHz, as the RF frequency clock. The modulation is achieved by directly modulating the digital PLL.

The power amplifier is also digitally controlled. The transmitter uses Polar-Modulation technique. While the phase-modulated control word is being fed to the ADPLL, the amplitude-modulated controlled word is fed to the class-E amplifier to generate a Bluetooth standard compliant RF signal. TX output power is up to class 1.5

confidential information preliminary specification

Bluetooth out of band emissions							
Parameter	Min	Тур	Max	Unit	Note		
Tx and Rx out of band			-100	dBm/Hz	76 to 108 MHz (FM)		
emissions. Output = 10dBm		-150	-147	dBm/Hz	746 to 764 MHz (CDMA)		
		-148	-145	dBm/Hz	869 to 894 MHz (CDMA1,GSM)		
		-146	-143	dBm/Hz	925 to 960 MHz (E GSM)		
		-142	-139	dBm/Hz	1.57 to 1.58 GHz (GPS)		
		-143	-140	dBm/Hz	1.82 to 1.88 GHz (GSM)		
		-143	-141	dBm/Hz	1.93 to 1.99 GHz (GSM,CDMA1,WCDMA)		
		-143	-139		2.11 to 2.17 GHz (WCDMA)		
		-70.5	-67	dBm	30kHz to 1GHz		
		-51.5	-41	dBm	1.0 to 12.75 GHz		

8.1.3 Bluetooth Low power schemes

The TC6000 device includes a mechanism that handles the transition between operating mode and deep sleep low-power mode. The protocol is managed via the UART and is known as the HCILL (HCI Low-Level) power management protocol.

This protocol is already implemented in the *BlueZ* BT-stack for Linux / Android operating systems.

confidential information preliminary specification

9 GPS CORE

9.1 GPS core description

The TC6000 GPS core is a high performance, low power GPS receiver with integrated RF frontend. Due to high input sensitivity it can work directly with a passive antenna.

The very short TTFF (Time To First Fix) and improved acquisition performance at low signal power levels is achieved through an enhanced receiver core architecture.

The improved RF architecture and software techniques reduce the average power consumption. Minimized error in multi-path environments is achieved through increased IF bandwidth and higher sampling rates in tracking channels.

TC6000 supports APM (adapted power management) schemes to lower the average power of the GPS core to below 20mW.

Supply of aiding information like ephemeris, almanac, rough last position and time and satellite status will reduce time to first fix significantly and improve the acquisition sensitivity.

GPS characteristics								
Parameter	Min	Тур	Max	Unit	Note			
general								
Frequency		1575.42		MHz	GPS L1; C/A code			
Output data frequency	1	1	2	1/sec	Configurable data rate			
Tracking&Navigation sensitivity			-162	dBm				
Acquisition sensitivity			-147	dBm	autonomous			
			-155	dBm	assisted			
TTFF hotstart			1	sec	@-130dBm			
TTFF hotstart			10	sec	@-155dBm			
TTFF coarse time assisted			18	sec	@-155dBm			
TTFF autonomous cold start		34		sec	@-130dBm			
TTFF autonomous cold start		45		sec	@-142dBm			
Number of channels tracking		16						
Number of acquisition channels		40						
GPS IDLE		5.64		mA				
GPS DEEP SLEEP		60	192	uA				
GPS ACTIVE (acquisition)		63	76	mA	NMEA frequency = $1/sec$			
GPS ACTIVE (tracking)		40	50	mA	NMEA frequency = 1/sec			
GPS ACTIVE (tracking)			9.5	mA	NMEA frequency=1/sec, -130dBm,APM feature active			
other								
1PPS pulse duration		1		msec				
1PPS time jitter			100	nsec	Pulse rising edge deviation from expected pulse time, measured in a 300 seconds interval with full 3D fix			
1PPS rise and fall time			10	nsec	10%90%			
1PPS output impedance	-	10kΩ//20pF	-					
TCXO output frequency		38.400		MHz	±2.5ppm			

TC6000

confidential information preliminary specification

TCXO output impedance		1MΩ//5pF		-	tbd			
		acc	curacy					
Static position error CEP68		2		~	Normal open sky in Field			
	-	2	-	111	using open sky roof-top antenna			
Static position error CEP95					Normal open sky in Field			
	-	3	-	m	Horizontal position accuracy			
					using open sky roof-top antenna			
Static position error CEP68					Simulator feed ,			
	-	-	2	m	IONO and TROPO errors oN			
					at -130 dBm power level			
Static position error CEP95					Simulator feed ,			
	-	-	3	m	IONO and TROPO errors oN			
					at -130 dBm power level			
dynamic position error					Simulator feed ,			
CEP68	-	-	3	m	IONO and TROPO errors oN			
					at -130 dBm power level			
dynamic position error					Simulator feed ,			
CEP95	-	-	4	m	IONO and TROPO errors oN			
					at -130 dBm power level			
velocity error CEP68					Simulator feed ,			
	-	-	0.1	m/s	IONO and TROPO errors oN			
					at -130 dBm power level			
velocity error CEP95					Simulator feed ,			
	-	-	0.7	m/s	IONO and TROPO errors oN			
					at -130 dBm power level			
ITAR limits								
Operation altitude	-5,000	-	18,288	m				
Operation velocity	-	-	514	m/s				
Operation acceleration	-	-	-	m/s ²	No limit set			

9.2 GPS power management features

Power management schemes implemented for any GPS/A-GPS system requires an optimally tuned performance for both accuracy of the position fixes and the average power consumed for best user experience. TC6000 architecture achieves both these aspects, by providing flexibility and design choices for the system integration based on wide range of use cases and leveraging on the proven silicon methodologies. Also TC6000 can provide position, velocity and time (PVT) measurements without any host loading. This coupled with the built-in power management option reduces the overall system power budget.

Power management features:

- APM feature provides overall GPS system power consumption of 17mW in tracking mode under open sky conditions
- Power management options that allows operation in typical signal conditions and deep sensitivity modes
- Inbuilt adaptive algorithm to provide best position accuracy and best power savings based on the user environment (urban canyon, open sky, semi urban etc)

confidential information preliminary specification

TC6000

- Can provide PVT solution without any load on the host. This reduces the overall system power further.
- Programmable position update rates. Max of 2 Hz update rate.

9.2.1 Power states for single location fix solutions

Applications involving the single fix (E-911, accessing catalog data like restaurants, tourist attraction etc, or for personalized services like buddy finder, query the asset being tracked, map browsing based on current location) require single fix with varied quality of service (accuracy and time to first fix). For single fix solutions, the GPS core can be set to very low power state DEEP SLEEP.

Single fixes can either be assisted or autonomous depending on the network service provider.

ACTIVE, IDLE and DEEP SLEEP are host software driven states. The host can command the receiver to enter different SW driven states using NMEA command messages.

9.2.2 Power states for continuous location fix

For navigation or other tracking scenarios like asset tracking, geo fencing, child tracking, fleet management etc., a continuous position update is required. Based on the update rate "APM tracking" mode or "APM rapid reacquisition" mode schemes can be used. The APM modes will be activated via an NMEA command.

APM mode is based on temporarily deactivating parts of the GPS engine when signal conditions are good. (open sky conditions).

The graph shows typical power consumptions with *APM Tracking Mode* activated. The current consumption is as low as 9.5 mA even for a 1-second update rate. *APM Tracking Mode* will

automatically adapt it's power requirements to the signal conditions. When entering a more difficult signal environment, the GPS engine will automatically switch to a higher or full power mode.

APM mode will be activated through a NMEA command message.

9.3 GPS almanac and ephemeris data

For quick re-acquisition of the GPS after off-times, the GPS engine should have access to almanac and ephemeris data. For TC6000, these data have to be held in the host non-volatile memory. GNS drivers will automatically store this data whenever there's an update. When the GPS is powered-up again, the data will be transferred to TC6000 to allow a quick re-acquisition.

confidential information preliminary specification

TC600

9.3.1 Assisted GPS (A-GPS)

- The GNS TC6000 module allows using assisting data to perform quick starts without having any stored data available. A-GPS feature improves the Time To First Fix (TTFF) dramatically, because the time for downloading ephemeris data can be totally saved. With the help of injected aiding data, TTFF can be as short as 3 seconds from a cold start situation.
- A-GPS is especially useful when location fixes are needed only from time to time or when starting locations are changed during shutdown. In these situations, a GPS receiver can not rely on stored data and will need to receive all data telegrams from the satellites.
- Furthermore, A-GPS can improve the start (acquisition) sensitivity of receiver. Without aiding data, the receiver must gather the ephemeris data from the satellites, which might be impossible under weak signal conditions. Using aiding data in conjunction with an coarse time information, the receiver can compute the SV positions and can start calculating the position immediately. This improves the effective acquisition sensitivity by ~15..20dB.

9.4 GPS antenna

TC6000 contains all input circuitry needed to connect directly a passive GPS antenna. Dependent of the application patch- or chip antennas or combo antennas (combination of GPS and Bluetooth) can be used. However, if there is a long wire between TC6000 GPS RF input and antenna, there should be an LNA (on the antenna side) to compensate cable losses ("active" antenna). For active antenna configuration, the antenna supply DC must be blocked from the antenna signal line with an inductor (270nH) and a capacitor of 100pF.

More information about connecting and implementing a GPS antenna to an application PCB, refer to [2] **GPS Antenna Connection Design Guide.**

confidential information preliminary specification

TC6000

9.5 Pulse Per Second (PPS)

TC6000 provide a so called Pulse Per Second (PPS) for timing purposes. After calculation of a 3D position fix, the PPS signal is accurately aligned to the GPS seconds boundaries. The pulse generated is approximately 1 millisecond in duration and the repetition rate is 1 second.

9.6 NMEA Data

TC6000 drivers provide NMEA (National Marine Electronics Association) 0183 compatible data. The following table shows the available NMEA sentences

NMEA data rate is 1/second or 2/second. All active NMEA sentences are sent at the selected rate

NMEA available sentences						
type	content					
\$GPRMC	Recommended Minimum Navigation Information					
\$GPGGA	Global Positioning System Fix Data, Time, Position and fix related data for a GPS receiver					
\$GPGSV	Satellites in view					
\$GPGLL	Geographic Position - Latitude/Longitude					
\$GPGSA	GPS DOP and active satellites					
\$GPVTG	Track made good and Ground speed					

TC6000

confidential information preliminary specification

10 FM FUNCTIONAL BLOCKS

The FM Core supports receive and transmit functionality alternatively. It can be switched between the two functionalities via software. Both functionalities provide full RDS support and analog and digital audio.

10.1 FM RECEIVER

10.1.1 FM receiver RDS decoder

The FM core includes digital and analog stereo audio output interfaces:

10.1.2 FM receiver audio paths

The FM core includes digital and analog stereo audio output interfaces:

- FM analog audio output is routed to the FM_AUD_L_OUT & FM_AUD_R_OUT pins.
- FM digital audio output is shared with the BT audio interface. See chapter digital audio for more information
- FM digital audio can be directly routed to the Bluetooth digital audio input to provide A2DP • audio transmission of FM audio content.

10.1.3 FM receiver characteristics

For all FM bands: 87.5 to 108 MHz Europe/USA, 76 to 91 MHz Japan. BT in standby mode. Maximum load on analog audio outputs: $R_L = \ge 30k\Omega$, $C_L \le 20pF$

Characteristics	Min	Тур	Max	Unit		Note	
Audia autaut imagdance			50	Ohm	FM enable	e during auto-search	
Audio output impedance	50			kOhm	FM function	on disable and when muted	
RF Rx input impedance		50		Ohm	With exte	rnal matching circuitry	
Frequency step	50			kHz			
Wide-band Spurious Response Rejection	40		1.2	dB	Entire FM = 75 kHz	band, RDS off, S Δ f = 75kHz, I Δ f , measured at ±400 kHz	
RF input power level			105	dBµV	Max input	power	
AM Suppression	40			dB	For $V_{IN} \leq$	1 mV ⁽¹⁾	
Maximum SNR	57	60		dB	Mono	$V_{IN} = 1 mV$, $f_{mod} = 1 kHz$, $\Delta f = 22.5 kHz$ m = 0.3, BAF = 300Hz to	
	53	56		dB	Stereo	15kHz, L=R De-emphasis= 50 μs	
RDS Sensitivity		20	25	dBµV	For RDS of blocks de 5000 bloc	leviation of 1.2 kHz. 95% of coded with no errors, taken over ks	
		15	20	dBµV	For an RD	S deviation of 2kHz	
Sensitivity		0	5	dBµV	$f_{mod} = 1 k$ (S+N)/N De-empha	kHz, Δf= 22.5kHz , A-weighted = 26 dB (BW of 300 Hz to 15kHz) asis= 50 μs	
			5	ms	Channel s	witch, synthesizer lock time	
RX setting time			8	S	Overall ba	and search time (200 channels)	
			100	ms	Host command to response		

(1) $f_{mod} = 1$ kHz (input tone), $\Delta f = 22.5$ kHz (Frequency of input signal), m = 0.3, BAF = 300 Hz to 15 kHz, L=R De-emphasis= 75 µs measured at analog or I2C audio outputs. Maximum load on analog audio outputs: $RL = \ge 30k\Omega$, $CL \le 20pF$

> © GNS-GmbH 2012 V 0.17, June 08th 2012

TC6000

confidential information preliminary specification

10.1.4 FM Rx Audio Characteristics

Characteristics	Min	Тур	Max	Unit	Note
		0.4%	0.8%		$V_{IN} = 1 mV$, L = R, de-emphasis= 50 μs
Total harmonic distortion		0.9%	1.5%		$V_{IN} = 1 \text{mV}$, L = R, de-emphasis= 50 µs, Δf =75kHz, f _{mod} = 3 kHz, stereo
		0.5%	1.0%		$V_{IN} = 1mV$, L = R, de-emphasis= 50 µs, Δf =75kHz, f _{mod} = 1 kHz, mono
Audio Bandwidth (-3dB points)	20		15k	Hz	f = 22.5kHz, ΔV_{IN} = 1mV, pre- emphasis 50 and 75 µs
Audio Output Level	60	75	90	mV ms	$V_{IN} = 1 mV$, $f_{mod} = 1 kHz$ (input tone), $\Delta f= 22.5 kHz$ (Frequency of input signal), m = 0.3, BAF = 300Hz to 15 kHz, L=R
Pilot Suppression (measured at audio outputs)	46			dB	Δf = 75kHz, f _{mod} = 1 kHz

10.1.5 FM Rx Signaling Detection

Characteristics ⁽¹⁾	Min	Тур	Max	Unit	note
RSSI Step size		1.505		dBµV	
RSSI accuracy		±3		dB	
IF counter length		7		bit	Number of bits for IF indication
Minimum strength	5	12	18	dBµV	Minimum input voltage for correct IF indication
Audio level at which a pause is detected	-21		-12	dB	Relative to 1-kHz tone, 22.5 kHz deviation, 50-µs de-emphasis, 4 values in 3-dB steps
Audio pause duration	20		40	ms	4 values
Audio spike rejection during pause period			5	ms	Bursts of audio (during pause period) that are over the threshold are ignored, if cumulatively less than stated figure

(1) $f_{mod} = 1$ kHz (input tone) , Δf = 22.5kHz (Frequency of input signal), m = 0.3, BAF = 300Hz to 15kHz, L=R De-emphasis= 75 μ s

confidential information preliminary specification

10.1.6 FM receiver RF input path

For the optimal FM RX performance the following Filter-Network is highly recommended:

parts list								
value package manufacturer comment								
C1	12pF	402	many					
C2	100pF	402	many					
L1	180nH	603	many	Q≥30				
L2	27nH	402	many	Q≥30				

confidential information preliminary specification

TC6000

10.2 FM TRANSMITTER

The FM core can be switched to transmitter functionality which can be used to send audio to a car stereo or other FM receiver via FM. The broadcast of very short distance transmissions is allowed in many countries, but special care must be taken to keep national and international regulations. Depending on the antenna construction, the output power level may differ from the set power level. It is absolutely necessary to check the transmission power level of the finalized device before bringing it to market to avoid infringements of telecommunication regulations.

10.2.1 FM transmitter legal notice

Please follow the national and international regulations regarding the power levels and duty cycles of FM transmission.

10.2.2 FM transmitter RDS encoder

The transmitter supports the RDS modulation of the FM signal. This feature can be used to push your device name to the car stereo display, for example. The RDS content will be defined via the software interface.

10.2.3 FM transmitter audio path

The FM core uses a digital I2S interface for audio input with two options that are selected via the software interface:

- FM digital input is fed into FM_I2S_CLK, FM_I2S_IN, FM_I2S_FSYNC pins
- FM digital audio input is fed into the shared FM and BT audio interface. See chapter *digital audio* for more information.

10.2.4 FM transmitter settings

The FM transmitter settings like on/off, output power setting, FM carrier frequency are controlled via the software interface.

confidential information preliminary specification

TC6000

10.2.5 FM transmitter output path

Matching network to meet out-of-band emissions in cellular bands.

	value	package	manufacturer	comment
C3	18pF	402	Murata	GRM1555C1H180JZ01
C4	1.5pF	402	Murata	GRM1555C1H1R5CZ01
C5	6.8pF	402	Murata	GRM1555C1H6R8DZ01
L3	22nH, Q≥30	402	Murata	LQW15AN22NG00
L4	120nH, Q≥30	402	Murata	LQW15ANR12J00
L5	15nH, Q≥30	402	Murata	LQW15AN15NG00

Matching network to meet IEC ESD standard and out-of-band emissions in cellular bands.

	value	nackage	manufacturer	comment
	value	раскаде	manufacturei	comment
C6	39pF	402	Murata	GRM1555C1H390JZ01
C7	470pF	402	Murata	GRM1555C1H471JA01
C8	1.5pF	402	Murata	GRM1555C1H1R5CZ01
C9	4.7pF	402	Murata	GRM1555C1H4R7CZ01
L6	22H, Q≥30	402	Murata	LQW15AN22NG00
L7	100nH, Q≥30	402	Murata	LQW15ANR10J00
L8	12nH, Q≥30	402	Murata	LQW15AN12NG00
U1	USBULC6-F3	Flip Chip	STMicroelectronics	ESD-Protection
U2	USBULC6-F3	Flip Chip	STMicroelectronics	ESD-Protection

23 © GNS-GmbH 2012 V 0.17, June 08th 2012

TC6000

confidential information preliminary specification

10.2.6 FM TX Characteristics

Characteri	stics ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾	min	typ	max	unit	no	te
Settling time				40	ms	Frequency switch	
Frequency acc	curacy			±10	kHz		
Channel spaci	ng	50	100	200	kHz	User configurable	
Output Max level	Max level	117	118		dB/µV	Maximum output p driving into $R_{load} =$ Q>30. All Frequen = R = 0(no modul internal gain	oower when 2KΩ, L = 120 nH ccies, TX = ON, L ation), 0dB
	Flatness			±2	dB		
	Range		28		dBm		
Composite de	viation			±75	kHz	L = R, 75mVrms, s	stereo enable
Pilot deviation	l	8%		10%		Relative to max pe Adjustable relative	eak deviation. to audio path
Audio input ba	andwidth	20		15000	Hz		
Stereo channe	el separation	30	40		dB		
Audio total ha distortion	rmonic		0.1	1	%	75 kHz deviation, modulation = 1kH	6.75 kHz pilot, z
	60	63		dB	22.5 kHz deviation, Mono I ² S audio SNR \geq 57 dB		
AUUIO SINK		56			dB	22.5 kHz deviation, Stereo I ² S aud SNR \geq 57 dB	
Audio spurious with respect to	s products o 1-kHz tone			-60	dBc	Deviation of 22.5k = R, BAF = 300 Hz 76 to 108 MHz, 50	Hz, 1-kHz tone, L z to 15 kHz, $f_{Tx} =$ -µs pre-emphasis
				0		0 to ±75 kHz offset	Peak deviation
In-band spuri	ous emission			-12.2	dBc	±120 kHz offset	tone 1kHz, pilot
			-30	-25		±200 kHz offset	= 6.75kHz
Occupied band	dwidth			-20	dBc	±100 kHz offset fr	om channel
TX noise floor				-140	dBm/Hz	850 to 2400MHz	
Out-of-band s	purious			-102	dBm	746 to 764 MHz	
emission (at n power)	naximum			-109		869 to 894, 925 to 1880, 1930 to 199	960, 1805 to 0MHz
· ,				-106		1570 to 1580 MHz	
				-96		2110 to 2170MHz	
				-110		2400 to 2483.5 MI	Hz (BT band)
Max deviation				100	kHz	Configurable, if loc permit	al conditions

(1) $f_{mod} = 1$ kHz (input tone) , Δf = 22.5kHz (Frequency of input signal), m = 0.3, BAF = 300Hz to 15kHz, L=R De-emphasis= 75 µs

(2) Measured to EN55020 standards

(3) FM TX antenna must have $Q \ge 30$

(4) ESD device present on TX output

confidential information preliminary specification

TC6000

11 POWER MANAGEMENT

The TC6000 module requires a single 1.8V power supply. The 1.8V at the VDD pin supplies all cores (GPS+BT+FM) with the voltage. The 1.8V at VDD_IO pin supplies the digital I/Os with voltage. **No signals are allowed on the device I/Os in the absence of VDD_IO voltage** because the most I/Os are **not** fail-safe. Not fail-safe means that the pins will draw undefined current from an external voltage applied to the pin, when no I/O power is supplied to the device. Only exception is RTC_CLK.

11.1 Power-Up/Power-Down Sequence in Shared UART Mode

The TC6000 power-up procedure is triggered by setting the BT_ENABLE pin to high. The GPS_EN pin must be kept low. The BT_ENABLE pin must be connected to a host I/O to enable the software drivers to perform a proper start up sequence.

The FM and GPS core can be shutdown via software commands to save more power.

- 1. The GPS_EN pin must be kept low.
- 2. I/O voltage (VDD_IO) and supply voltage (VDD) should be available before pulling the pin BT_ENABLE high. Internal pull-downs are provided on the Enable pins to avoid false start-ups.
- 3. The RTC_CLK must be available before BT_ENABLE pin is pulled high.

11.2 Shutdown and Reset

The low BT_ENABLE signal puts the TC6000 into an ultra-low power (shutdown) mode and also performs an internal reset to the device. The Enable signal rise time must not exceed 20µs. GNS drivers will safely control the BT_ENABLE to wakeup the TC6000 after off times or after suspend.

TC6000

confidential information preliminary specification

12 RTC CLOCK

The RTC_CLK or slow clock is a free-running clock that is supplied from an external clock source. It is connected to the RTC_CLK pin on the TC6000, and is a digital square wave signal in the range of 0 V to 1.8 V (nominal). All cores (GPS, BT and FM) on the TC6000 share the same RTC_CLK. The slow clock frequency is 32.768 kHz. RTC_CLK has multiple functionalities:

- Used to maintain GPS time between sleep intervals
- For clock frequency detection at power-on reset, before TCXO_CLK is available
- For FM core functionalities

Digital RTC Requirements							
Parameter	Min	Тур	Max	Unit	Note		
Input slow clock frequency		32.768		Hz			
Input slow clock accuracy			±200	ppm	Initial + temperature + aging		
Input transition time			100	ns	t _R /t _F : 10% to 90%		
Frequency input duty cycle	20%	50%	80%				
Phase noise			-125	dBC/Hz	At 1 kHz offset		
Frequency jitter			1	Hz	Integrated over 300 Hz to 15 kHz		
V _{IH}	0.65x VDD_IO		VDD_IO	V	Slow clock input voltage limits		
V _{IL}	0		0.35x VDD_IO	V	Slow clock input voltage limits		
Load capacitance			10	pF	Capacitance on RTC_CLK pin		
Load resistance			1	MΩ	Resistance on RTC_CLK pin		

confidential information preliminary specification

TC6000

13 HARDWARE HOST INTERFACE

TC6000 allows two different concepts for interfacing to a host processor.

The **shared UART** concept needs only a single physical interface (a high speed, handshaked UART) to transport all data and control information. This interface is supported by the GNS drivers for Windows CE.

The second concept uses **two UART**s, one high speed UART with handshake for the Bluetooth communication and one "low" speed UART that supports GPS. The two UART concept is preferred for Linux / Android systems.

<u>Note</u>: For the high speed UART, it is of importance that the UART system (HW and drivers) are able to transport high data rates (up to 4MBit/s) without any data losses. Any data loss breaks the communication flow and requires a reset of TC6000.

One or two additional GPIO lines are needed to control the enable line of TC6000.

13.1 UART specifications

High speed UART Timings:

TC6000

confidential information preliminary specification

High speed UART data							
Parameter	Min	Тур	Max	Unit	Note		
Baud rate		115.2		kbps	Start value after reset		
Baud Rate	(37.5)	>2000	4000	kbps	A rate of more than 2MBit is needed to perform fast start-up and high data rates on BT		
Data format		8 N 1			8-Bit no parity 1 stop bit		
t5 and t7			-2,5% to +1,5%		Baud rate accuracy		
t3	0	2		ms	CTS low to TX_DATA on		
t4			1	byte	CTS high to TX_DATA off		
t6	1			bit	CTS High Pulse Width		
t1	0	2		ms	RTS low to RX_DATA on		
t2			16	bytes	RTS high to RX_DATA off		
t _{rise} / t _{fall}			25	ns	Rise and Fall times (10%-90%)		

Low speed (GPS-) UART data							
Parameter	Min	Тур	Max	Unit	Note		
Baud rate		115.2		kbps	Start value after reset		
Baud Rate	9.6		400	kbps			
Data format		8 N 1			8-Bit no parity 1 stopbit		
t5 and t7			-2,0% to +1,5%		Baud rate accuracy		
t _{rise} / t _{fall}			25	ns	Rise and Fall times (10%-90%)		

confidential information preliminary specification

TC6000

13.2 Fully Shared Host Interface Connection through UART:

In this configuration, all three cores share the same interface to communicate with the host. It's a four wire interface (RX, TX, RTS, CTS). TC6000 can support a maximum baud rate of 4Mbps. The UART should be operated at a minimum of 2Mbps to ensure a proper operation. In this configuration GPS and FM cores maybe shutdown via software command to save some energy. GPS_ENABLE pin must be tied to ground.

confidential information preliminary specification

TC6000

13.3 Shared UART for BT/FM & dedicated 2nd UART for GPS:

In this configuration BT and FM use a four-wire UART interface (RX, TX, RTS, CTS) with a maximum baud rate up to 4Mbps.

GPS uses a two-wire interface with no flow control (null modem connection). The 2nd UART for GPS supports speed up to 400kbps.

The BT_ENABLE and GPS_ENABLE pins must be connected to a host GPIO to allow controlling the subsystems of TC6000 separately. GNS drivers support the control via software.

The FM Enable state is controlled through software.

13.4 GPS UART Interface details

The UART interface is used to send/receive control information , data and wrapped NMEA messages to the host.

GNS provides driver software to support NMEA through one or more virtual COM ports.

The default baud rate after power-up the device is 115.2 kbps, regardless of the clock frequency supplied to the device. The maximum baud rate deviation supported is $\pm 2\%$. After boot-up, the host can change baud rate.

confidential information preliminary specification

TC6000

14 HOST INTERFACE PROTOCOL&DRIVERS

TC 6000 allows to transport multiple functionalities over a single high speed UART as described before.

This data transport layer is realized through a proprietary low level protocol.

To gain access to the data and control over the function blocks, a set of <u>drivers</u> is needed to split the data to the 3 functionalities and to translate the proprietary protocol to standard protocols:

The table shows an overview of available drivers (December 2010) and their interfacing to the host

	Hos	st appli	cation in	nterfaces	
	Avail	ailability			
Functionality	Drivers Linux	Drivers WinCE	Host interface	Host interface protocol	note
Configuration data for all function blocks of TC6000	1/2011	1/2011	-	Registry data	Configuration data is stored as registry entries, data will be transferred to TC6000 by the GNS drivers
Bluetooth	YES	1/2011	COMport	HCI	The HCI interface must be linked to a Bluetooth stack to perform the desired BT-services
GPS data / control	YES	1/2011	Virtual COM port(s)	NMEA interface	One ore more virtual COM ports to run one or multiple GPS clients
FM Rx control	On request	1/2011	GNS GPSTMC- API	Library functions	The GNS GPSTMC API exposes an application interface for automatic TMC reception, preprocessing, station management, TMC-CA management.
FM RDS data and TMC	On request	1/2011	GNS GPSTMC- API	Library functions	The GNS GPSTMC API exposes an application interface for automatic TMC reception, preprocessing, station management, TMC-CA management.
FM Tx control	On request	On request	TBD	TBD	To be implemented

For Traffic Message Channel (TMC) over FM RDS, GNS offers the proven best-in-class API solution, for easy TMC implementation.

confidential information preliminary specification

TC6000

15 <u>DIGITAL AUDIO</u>

15.1 Audio options

TC6000 offers different digital audio interface options to support digital audio I/O for FM and Bluetooth

- 1. Bluetooth and FM may share the same pins for digital audio . Only a single interface is needed to support audio functionalities. *See Bluetooth/FM AudioBus Sharing* for details. The shared audio interface will support Bluetooth Voice (over SCO connection) in conjunction with the HandsFree (HF) or HeadSet (HS) profiles.
- 2. For stereo audio A2DP , the UART HCI interface must be used.
- 3. TC6000 can act as the "master" by supporting the CLK and framing signals or it can serve as the slave. When TC6000 is configured as the slave, the host must provide CLK and fsync signals.

The options will be selected via registry configuration entries.

15.2 Bluetooth/FM Audio Bus Sharing for voice applications (HF & HS profiles)

The FM I2S bus is connected to the BT PCM bus internally to achieve BT/FM audio bus sharing. To do this, the FM I2S signals change to PCM protocol to achieve the configuration. The FM I2S and BT PCM pins will be connected internally with the help of a software command. In the shown configuration, the TC6000 has been configured to provide the CLK and fsync signals.

TC6000

confidential information preliminary specification

A time multiplexing scheme must be used to allow the different audio signals to share the same pins. Please be sure your host system will follow this time diagram:

TC6000

confidential information preliminary specification

15.3 PCM and I2S Timings

TC6000 as PCM Master						
	Parameter Min Typ Max Unit Note					
t _{clk}	Cycle time	244		15625	ns	
freq	Frequency (1/ Cycle time)	64		4098	kHz	
t _{is}	AUD_IN setup time	30			ns	
t _{ih}	AUD_IN hold time	10			ns	
t _{op}	AUD_OUT / FSYNC_OUT propagation time			10	ns	50pF load

TC6000 as PCM Slave						
	Parameter Min Typ Max Unit Note					
t _{clk}	Cycle time	61		15625	ns	
freq	Frequency (1/ Cycle time)	64		16393	kHz	
t _{is}	AUD_IN setup time	5			ns	
t _{ih}	AUD_IN hold time	8			ns	
t _{op}	AUD_OUT / FSYNC_OUT propagation time			20	ns	50pF load

TC6000

confidential information preliminary specification

16 PHYSICAL DIMENSIONS

all units in mm

35 © GNS-GmbH 2012 V 0.17, June 08th 2012

confidential information preliminary specification

17 RECOMMENDED PAD LAYOUT

TOP VIEW

all units in mm

18 MATERIAL INFORMATION

complies to ROHS standard ROHS documentations are available on request contact surface : gold over nickel

18.1.1 Shield Material Information

"German Silver ", CuNi18Zn27 Cu: 53.5..56.5% Ni : 16.5..19.5% Zn : 24..30% thickness :0.2mm

confidential information preliminary specification

19 <u>RECOMMENDED SOLDERING REFOLW & GLUE HARDENER</u> <u>PROFILE</u>

Notes:

1. TC6000 should be soldered in upright soldering position. In case of head-over soldering, please prevent shielding / TC6000-Module from falling down.

- 2. Do never exceed maximum peak temperature
- 3. Reflow cycles allowed : 1 time
- 4. Do not solder with Pb-Sn or other solder containing lead (Pb)
- 5. This device is not applicable for flow solder processing
- 6. This device is not applicable for solder iron process !

TC6000

confidential information preliminary specification

20 TAPE INFORMATION

Bo	10.50	+/-	0.1
Ko	2.40	+/-	0.1
F	11.50	+/-	0.1
P 1	12.00	+/-	0.1
W	24.00	+/-	0.3

Ao

Forming format : Flatbed Estimated max. length : 60 meter/22B3 reel

- (III)
- (IV) Other material available.
- ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

confidential information preliminary specification

21 REEL INFORMATION

no. of devices : 2000 pcs / reel

22 ORDERING INFORMATION

Ordering information				
Type Part# Laser marking Description				
TC6000	4037735104068	TC6000 GNS <yy mm=""> <serial#></serial#></yy>	GPS-/FM-/BT-Module with embedded TCXO	

confidential information preliminary specification

23 ENVIRONMENTAL INFORMATION

This product is free of environmental hazardous substances and complies to 2002/95/EC. (RoHS directive).

24 MOISTURE SENSITIVITY

Shelf life	Unlimited
Storage conditions	≤30C/85%RH
Moisture Sensitivity Level (MSL)	1
Possible prebake recommendations	None

25 DOCUMENT REVISION HISTORY

V0.01	Sep 04 2009	K.Rudnizki	initial objective
V0.03	Feb 04 2010	K.Rudnizki	
V0.04	Feb 26 2010	K.Rudnizki	
V0.05	Mar 04 2010	K.Rudnizki	Uart Timing, PCM Timing, FM Audio Paths
V0.1	Jun 11 2010	P.Skaliks	Overall revision, doc status changed to preliminary V01
V0.11	Jun 15 2010	P.Skaliks	Added MSL information
V0.12	July 16 2010	M.Reiff	Added Host Interface Combinations
V0.13	Aug 10 2010	P.Skaliks	Added host protocol, formal rework of doc
V0.14	Sep 28 2010	P.Skaliks	Added information digital audio
V0.15	Dec 15 2010	P.Skaliks	Added information, extended maximum ratings (temp),BT standard extended to 3.0+EDR,pps data added, packaging, solder profile, GPS description, BT description
V0.16			Corr. TCXO_CLK pin
V0.17	June 08 2012	M.Reiff	Related documents, GPS accuracy and ITAR limits added; chpt3.1 GPS sensitivity, GPS deep sleep current and laser marking corrected;

TC6000

confidential information preliminary specification

26 RELATED DOCUMENTS

Туре	description	Ref	Available from
TCEADO StartarKit Usar manual	Hardware manual for the GNS TC6000		www.forum.gns-
	Starter Kit	L	<u>gmbh.com</u>
GPS Antenna Connection Design	Design Guide to implement an GPS		www.forum.gns-
Guide	antenna to an application PCB	2	<u>gmbh.com</u>
TCEADOCN Startarkit TastCuida	A guide for testing TC6000series against	2	www.forum.gns-
	other GPS receivers	5	<u>gmbh.com</u>

27 PACKAGING

1 reel		
contents	2,000pcs	
GNS part#	2 x 655000003	
dimonsions	1X 0550000011 dia: 220mm thickness: 20.4mm	
		with full contants
gross weight	1.195 Kg	with full contents
net weight	0.246 Kg	
2 vacuum bag	1	
GNS part#	6550000006	
dimensions	400mm x 480mm	
gross weight	1.263 kg	with full contents
net weight	0.068 Kg	
air pressure level	<30mbar	
3 moisture indic	ator	
GNS part#	655000008	
dimensions	76mm x 51mm	
weight	0.001 Kg	
4 dry pack		
GNS part#	655000007	
dimensions	145mm x 140mm	
weight	0.068 Kg	
5 Box for reel		
GNS part#	6550000012	
dimensions	350 mm x 350mm x 47mm	
gross weight	1.516 kg	with full contents
net weight	0.184 kg	
6 Outer box		
contents	max 7 box for reel	(14,000 pcs TC6000)
dimensions	400mm x 370mm x 360mm	
gross weight	10.612 kg	with full contents
net weight	0.85 kg	

confidential information preliminary specification

© GNS GMBH 2010..2012

THE INFORMATION IN THIS DOCUMENTATION DOES NOT FORM ANY QUOTATION OR CONTRACT. TECHNICAL DATA ARE DUE TO BE CHANGED WITHOUT NOTICE.

NO LIABILITY WILL BE ACCEPTED BY THE PUBLISHER FOR ANY CONSEQUENCE OF THIS DOCUMENT'S USE. REPRODUCTION IN WHOLE OR IN PART IS PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF THE COPYRIGHT OWNER